SHORT COMMUNICATION

A Simple High Yield Synthesis of trans-Difluorodiazene (trans- N_2F_2)

VOLKER MUNCH* AND HENRY SELIG

The Hebrew University of Jerusalem, Department of Inorganic and Analytical Chemistry, Jerusalem, Israel.

Trans- N_2F_2 is a highly reactive compound and of interest as a high energy oxidizer, as a potential scavenger for radiokrypton [1], or as an initiating agent for polymerizations [2]. Its application as a fluorinating agent in organic chemistry has been described recently [3].

Many different synthetic methods for preparing trans- N_2F_2 are known. They are listed and compared in [4], where their relative disadvantages are discussed. All suffer from the drawback of not producing a pure isomer in high yield in one simple step, or only yield mixtures of cisand trans- N_2F_2 [4].

During an extensive study [5] of the chemistry of AsF₅-graphite intercalation compounds [6] we found that fluorinated and unfluorinated first stage AsF₅ - intercalates: $C_{10}AsF_{5+x}$ (x = 0-0.5) converted N_2F_4 quantitatively into a mixture of 90% trans- N_2F_2 , 5% NF₃ and 5% N₂. The reaction can be expressed by equation (1).

Blue

Black

 $C_{10}^{AsF}_{5+x} + N_2F_4 = C_{10}^{AsF}_{7+x} + trans - N_2F_2$ (x = 0-0.5) (1) The results are listed in Table 1.

It is obvious that the reaction is carried out best with finely divided powdered intercalates. No difference in the reactivity between fluorinated and unfluorinated $C_{10}ASF_5$ has been observed.

^{*}Anorganisch Chemisches Institut der Universität, Im Neuenheimer Feld 270, D-6900 Heidelberg, West Germany.

Z 4	2 4 10	X+9				
Starting Materials	S			Products		
Intercalate (Powder)	AsF ₅ (mmol)	N ₂ F ₄ (mmo1)	time (days)	trans- $N_2F_2(NF_3)$ (mmol)	average mole- cular weight (g)	non conden- sable gases (mmol)
c _{10.3} AsF ₅	1.56	1.03	2	0.99	68	≥ 0.04
c ₁₀ AsF ₅	1.66	1.66	2	1.6	68	* 0.1
c _{9.36} AsF _{5.5}	3.45	3.4	2	2.9	68	r 0.3
C10.6 ^{AsF} 5.6	L	-	5	0.96	65	∿ 0.05
c ₁₀ .6 ^{AsF} 5.6	2	2	4.5	1.9	65	۰ ۵.1
Grafoil						
c _{9.38} AsF5	ę	e	-	No reaction after 1 day	ifter 1 day	
c _{9.1} AsF _{5.5}	£	ε	13	1.7	72	

The reaction of N_2F_4 with $C_{10}AsF_{6+x}$ (x = 0-0.5)

TABLE 1

254

The identification of the gases was carried out by JR-spectroscopy [7][8], mass spectrometry [9][10] and molecular weight measurements. The composition of the gas phase was established by selective reduction with aqueous KI, leaving behind 5% NF₃ and by IR intensity measurements of the v_3 band of NF₃ (907 cm⁻¹) [8] in comparison with calibrated NF₃ - spectra. The gas phase contains no impurities other than NF₃ (\leq 5%).

The reaction ends after N_2F_4 is converted by an equivalent of intercalated AsF₅. This is best explained in terms of intermediate formation of the adduct $N_2F_3^+AsF_6^-$ [11] inside the graphite, followed by fluoride abstraction by the graphite. The reaction does *not* take place with the second or third stage compounds $C_{16}AsF_5$, $C_{24}AsF_5$.

Graphite powder (SP-1, Ceylon graphite min. purity 99.9%), obtained from Union Carbide Co., was used without further purification. AsF₅, obtained from Ozark-Mahoning, was purified by low temperature distillation. The experiments were conducted in a high vacuum metal line constructed from Monel and Nickel. Reactions were carried out in a/4" preweighed Kel-F tubes sealed with 1/4" flare Kel-F valves. The amounts of N₂F₄ and products were determined by PVT measurements and by weight. First stage AsF₅ intercalates were prepared by the procedure given in [6]. Fluorinations were carried out by treating C₁₀AsF₅ with F₂ at a pressure of 600 mm Hg for 12 to 20 h *in the same vessel*.

trans-N₂F₂

l mmol N₂F₄ per l mmol intercalated AsF₅ is condensed on top of the blue graphite compound at -196°C *in the same vessel*. The vessel is allowed to warm up slowly and kept at room temperature for 1 to 2 days. N₂ is pumped off at -196°C and trans-N₂F₂ (90%) and NF₃ (\leq 5%) are distilled from the solid at room temperature.

If necessary NF₂ can be separated by column chromatography [4].

ACKNOWLEDGEMENT

V.M. expresses thanks to the DFG for support of this work by a personal grant.

- 1 J.F. Liebman, Nature, 244, 84 (1973).
- 2 J.R. Schaufgen, J. Polym. Sci: Part C (24), 75 (1967).
- 3 J. Bensoam and F. Mathey, Tetrahedron 1ett. (32), 2797 (1977).
- 4 L.M. Zaborowski, R.A. DeMarco and J.M. Shreeve, Inorganic Synthesis, <u>14</u> 34 (1973) McGraw-Hill Book Company, New York.
- 5 V. Münch and H. Selig (to be published)
- 6 Lin Chun-Hsu, H. Selig, M. Rabinovitz, J. Agranat and S. Sarig, Inorg. Nucl. Chem. letters <u>1</u>1, 601 (1975).
- 7 Shih-Tung King and J. Overend, Spectrochim. Acta 22, 689 (1966).
- 8 H. Siebert, Anwendungen der Schwingungsspektroskopie in der anorganischen Chemie. Springer Verlag, Berlin, Heidelberg (1966), p. 57.
- 9 C.B. Colburn, J. Chem. Ed. 38, 181 (1961).
- 10 N.H. Beattie, Appl. Spectrosc. 29, 334 (1975).
- 11 A.R. Young and D. Moy, Inorg. Chem. 6, 178 (1967).
- 12 J.E. Fischer and T.E. Thompson, Physics Today, July 1978, 36.