SHORT COMMUNICATION

A Simple High Yield Synthesis of trans-Difluorodiazene (trans-N₂F₂)

VOLKER MUNCH* AND HENRY SELIG

The Hebrew University of Jerusalem, Department of Inorganic and Analytical Chemistry, Jerusalem, Israel.

Trans-N2F2 is a highly reactive compound and of interest as a high energy oxidizer, as a potential scavenger for radiokrypton [l], or as an initiating agent for polymerizations [2]. Its application as a fluorinating agent in organic chemistry has been described recently [3].

Many different synthetic methods for preparing trans-N₂F₂ are known. **They are listed and compared in [4], where their relative disadvantages** are discussed. All suffer from the drawback of not producing a pure **isomer in high yield in one simple step, or only yield mixtures of cis**and trans-N₂F₂ [4].

During an extensive study [5] of the chemistry of AsF₅-graphite **intercalation compounds [6] we found that fluorinated and unfluorinated** first stage AsF₅ - intercalates: C_{10} AsF_{5+x} (x = 0-0.5) converted N₂F₄ quantitatively into a mixture of 90% trans-N₂F₂, 5% NF₃ and 5% N₂. The **reaction can be expressed by equation (1).**

Blue

 C_{10} AsF_{5+x} + N₂F₄ = C_{10} AsF_{7+x} + trans-N₂F₂ (x = 0-0.5) (1) **The results are listed in Table 1.**

It is obvious that the reaction is carried out best with finely divided powdered intercalates. No difference in the reactivity between fluorinated and unfluorinated C₁₀AsF₅ has been observed.

^{*}Anorganisch Chemisches Institut der Universitat, Im **Neuenheimer Feld 270, D-6900 Heidelberg, West Germany.**

 $(x = 0-0.5)$ The reaction of $N_{\alpha}F_{\alpha}$ with $C_{1,\alpha}A$ s $F_{\alpha+...}$ $(x = 0\text{-}0.5)$ The reaction of N_oF, with C₁₀AsF_{cim}

TABLE 1

TABLE 1

 $2\,5\,4$

The identification of the gases was carried out by JR-spectroscopy [71[81, mass spectrometry [9][10] and molecular weight measurements. The composition of the gas phase was established by selective reduction with aqueous KI, leaving behind 5% NF₃ and by IR intensity measurements of the v_3 band of NF₃ (907 cm⁻¹) [8] in comparison with calibrated NF₃ - spectra. The gas phase contains no impurities other than NF_3 ($\leq 5\%$).

The reaction ends after N_2F_4 is converted by an equivalent of intercalated AsF₅. **This is best explained in terms of intermediate formation of the adduct** N_2F_3 ⁺AsF₆⁻ [11] inside the graphite, followed by fluoride abstraction by **the graphite. The reaction does** *not* **take place with the second or third** stage compounds C₁₆AsF₅, C₂₄AsF₅.

Graphite powder (SP-1, Ceylon graphite min. purity 99.9%), obtained from Union Carbide Co., was used without further purification. AsF₅, **obtained from Ozark-Mahoning, was purified by low temperature distillation. The experiments were conducted in a high vacuum metal line constructed from Mane1 and Nickel. Reactions were carried out in a/4" preweighed Kel-F tubes sealed with l/4" flare Kel-F valves. The amounts of** N₂F₄ and products were determined by PVT measurements and by weight. First stage AsF₅ intercalates were prepared by the procedure given in [6]. Fluorinations were carried out by treating C₁₀AsF₅ with F₂ at a pressure of 600 mm Hg for 12 to 20 h in the same vessel.

trans-N2F2

1 mmol N₂F₄ per 1 mmol intercalated AsF₅ is condensed on top of the blue graphite compound at -196⁰C in the same vessel. The vessel is allow**ed to warm up slowly and kept at room temperature for 1 to 2 days.** N₂ is pumped off at -196⁰C and trans-N₂F₂ (90%) and NF₃ (\leq 5%) are distilled **from the solid at room temperature.**

If necessary NF_{3} can be separated by column chromatography [4].

ACKNOWLEDGEMENT

V-M. expresses thanks to the DFG for support of this work by a personal grant.

- **1 J.F. Liebman, Nature, 244, 84 (1973).**
- **2** J.R. **Schaufgen, J. Polym. Sci: Part C (24), 75 (1967).**
- 3 J. Bensoam and F. Mathey, Tetrahedron 1ett. (32), 2797 (1977).
- **4 L.M. Zaborowski, R.A. DeMarco and** J.M. **Shreeve, Inorganic Synthesis, 14 34 (1973) McGraw-Hill Book Company, New York.**
- **5 V. Mllnch and H. Selig (to be published)**
- **6 Lin Chun-Hsu, H. Selig, M. Rabinovitz, J. Agranat and S. Sarig, Inorg. Nucl. Chem. letters ll_, 601 (1975).**
- **7 Shih-Tung King and J. Overend, Spectrochim. Acta 22_,** 689 **(1966).**
- **8 H. Siebert, Anwendungen der Schwingungsspektroskopie in der anorganischen Chemie. Springer Verlag, Berlin, Heidelberg 1966), p. 57.**
- **9 C.B. Colburn, J. Chem. Ed. 38, 181 (1961).**
- **10 N.H. Beattie, Appl. Spectrosc. 29, 334 (1975).**
- **11 A.R. Young and 0. Moy, Inorg. Chem. 6, 178 (1967).**
- **12 J.E. Fischer and T.E. Thompson, Physics Today,** July **978, 36.**